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Abstract

The measurement of the types of ions present in gaseous
plasmas and their bhehavior as a functi;:.;f t!mJ, gas pressure,
method of plasma sxcitation, etc., is believed to be a necessity
for obtaining conclusive interpretations of a large number of
phenomena occurrimg in these plasmas., The theory of a mass-
spectrometer of the quadrupole-field type is given. The reasons
which led to the choice of this type of mass-spectrometer for
the study of basic collision processes occurring in gaseous
plasmas are discussed in detail. The mass-spectrometer can be
outgassed at a temporature of 400°C in order to ensure ultra-
high gas purity. Construotion details of the mass-spectrometer,

the associated electronic equijment and vacuum system are included

in this manuscript.
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Chapter 1
Introduotion

A renewed interest in the study of basic collision processes
arose, during the last decade, in the field of Plasma Physics. This
is mainly due to the realisation that an understanding of the basic
processszs ocourring in gaseous plasmas may be of use in fields re-
lating te a) space-flight physics, b) rocket propulsion technology,
¢) conversion of thermal energy into electrical energy, d) black-
out phenomena and e) production of energy by means of nuclear fusion.

As a consequence, a research group active in the study of basic
phenomena in gaseous plasmas has been established at the Department
of Eloctric;l Engineering of the University of Minnesota. One of the
main goals is to increase the understanding of the physics of dis-
integrating plasmas. The processes determining the rate of decrease
of the charge density (electron density) are:

1, Recombination of electrons with positive charge carriers.

2. Diffusion (in most cases ambipolar) of charge carriers
towards the boundaries of the plasma.

3. Attachment of electrons to neutral particles followed by
negative ion~positive ion recombination.

4, Production of charge carriers during the disintegrationa
period (afterglow period) of the plasma by metastable atomemetastable
atom interactions.

5. Conversion of one type of ion into another type; for imstance,
the conversion of atomic ions into molecular ions is assumed to be an

important process.

L
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It is evident that, when confining the studies to the measure-
ment of the electron densitvy as a function of time during the afterglow
period only, a conclusive interpretation of the measurements is risky
if not without any value. It is, therefore, necessary to measure
various quantities simultaneously and to combine the results obtained
with the different measuring techniques.

In order to aid the interpretation of the complicated phenomena
occurring in disintegrating plasmas, the identification of the tvpe -
of ions present and their hehaviour auring the afterglow period be-
comes a necessity. Therefore, plans were made for the construction
of a mass-spectrometer, which has a resolving power sufficient for
distinguishing between tho various types of ions, combined with a very
high transmission and collection efficiency. This mass-spectrometer
will make it possible to identify the types of ions present as well
as their rate of change during the afterglow period.

This manuscript describes the develorment of a quadrupole type
mass-spectrometer which meets these particular requirements. In
addition, the other advantages this typehas over the more ronventional
mass-spectrometers, will he discussed.

Since 1913, when J. J. Thomson developed the paraholic mass-
spectrometer employing parallel electrostatic and magnetic fields,
numerous technigues have heen developed for mass analysis as is
apparent through examination of the literature. The most common types
of mass-spectrometers are:

Magnetic mass-spectrometers: This type analyzes the mass of

monoenergetic ion beams by using 600, 90°, or 180° homogeneous sector

magnetic fields,

Y
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Time~of-f1ight mass-spectrometers: This type utilises the
principle that the time needed fo_;, an ion with specific energy te
traverse a drift space is mass dependent.

A rather new type of mass-spectrometer was developed by W. Paul
and others at the Uni‘voruity of Bonn, Germany, since 1958. This
spectremeter employs the “mass filtering” principle, produced when
injecting ions through a quadrupole rf field and do field applied
simultaneously. The gquadrupole type spectrometer was chosen for owr
particular applications as it offers the following advantages over the
other types:

1. ?he resolution of the instrument is variab.e and can be
changed very easily by simply changing the ratio o. the applied dc
voltage to the rf voltage amplitudes. This makes it possible to
ensure maximum efficiency and hence higher sensitivity throughout
the entire mass range. This point will be discussed in greater detail
in a subsequent chapter.

2. Contrary to the previously mentioned types of spectrometers,
the quadrupole spsctrometer offers no velocity discrimination; omly
an upper limit exists.

3. In contrast to the magnetic mass-spectrometer, the “mass
filter” permits operation at higher residual gas pressures, because
the stability characteristics of an ion are mot changed (at least to
a first approximation) by collisions with molecules of the residual
gas (disregarding charge exchange). It is, therefore, expected that
the line broadening caused by residual gases, as is known from magnetic
nu-lpectrometers,l will be substantially less in the case of the

quadrupole spectrometer. 2
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4, No magnetic field requirements: It is well « ~wn that strav
magnetic fields greatly disturb the conditicons of an active a. well
as a pasaive plasmai The quadrupole spectromater does not employ a
nagnetic field thus eliminating the shielding problem which becomes
very difficult at high mass analysis with magnetic spectrometers.

5. It will be shown later that the injection conditions oi the
9 = ™nle spectrometer, and especially the allowable radial energies
are guite tolerable t.,us el.rinating the need for slits and other
complicated focusing requirements. Moreover, this increases the
efficiency of the mass-spectromet.r.

6. The quadrupole mass-spectrometer described here has the
extra festure of being bakeable thus insuring operation with a clean
high-vacoum system.

The above considerations governed the decision as to the type
of spectrometer to be used. The instrument is now being constructed
at the Department of Electrical Engineering of the University of

Minnesota.

References
1. Ehrenberg, H. Fr., "Isotopenenalysen an Blei aus Mineralen”, Z.
Physik 134, 317 (1953).
2. Paul, W., H. P, Reinhard and U. von Zahn, ”“Das elektrische
Massenfilter als Massenspektrometer Und Isotopentrenner”, Z.

Physik 152 (2), 143 (1958).
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Chapter 2

2.1 Introduction

The mass filtering action of the quadrupole masse—spectrometer is
based on the behaviour of the solutions of the ecygutions of motien of
the injected charged particles. In this chapter,. w will first ebtain
the differential equmations of motion of the injecwted particles amd
then proceed to solve it under specific conditiorwms of periodicity.
We will then discuss the general theory of the scmlutions in erder to
be able to understand the boh":log{ of the solutil om under various
applied conditions and thus determine the stabilil ty regions essential
for the operation of the spectrometer.
2.2 Equations of motion

The application of a voltage (U + V cos wt) ona .hyporboh-lhapod
quadrupole shown in Pig. 2.1 results in the estalx lishment of a potential
distribution within the quadrupole region which c+ an be writtonln'

2 2
¢-(U+Vco-ut)5-:§- ,

r
(<]

where r, is the distance from the origin to the pswoint of intersection
of the two rectangular hyperbolae with the x and -y axes. Hence, the

electric field distribution in the region is

_8-22 = e L
E x 2 (U + V cos wt) >

-

o

E _,ég = 2(U+Vconwt)-%
r
o

*We neglect end effects,



N
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E’ =0 .
We will now proceed to analyse the motion of a rositively charged
particle injected in the z-direction into the electric field region.
The equations of motion of a charged particle in the x, vy and =

dirsrotions are

mi’-oEx--ZQ(U#Vcoswt)-%

To
or
m§+zo(U+Vcolwt)—’5§ =0
r
o
n'i-Zo(U+Vooawt)-Lz- =0
r
o
and
m's =0
or

m & = constant.

Since the sign of the de. component of the field in the y~
dircction i1s negative, the force due to this constant field exerts a
defocusing influence on the ions (tends to increase y). In the x-
direction, however, the particles are focused by the constant component
of the field.

It is to be noted, however, that the ac component of the field
dominates the motion of the ions since the amplitude V is larger than
U as will be illustrated later.

Consider the motion in the x+direction:

n % -2-—;- (U+Vooswt) x=0 . (2.1)

r
[~}

AN
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t wt =2y, so that
dx _ w dx
dt 2 dy
and
dx L wd wdx o d
dtz 2 dyr 2 dv7y 4 dyz
Substitution in equation 2.1 gives
mz dzx 2 ol 2 eV
et S 3 * 2colZY x =0
day’ m r, m r, .
or

°
Denoting
8 ol \'A
2 == and q";z
mwr mor
o o
gives
dzx
-3 * (a + 2g cos 2y) x =0 . (2.2)
dy

Following the same procedure, one can easily find the equation of

motion in the y-direction to be

2

I

z - (a + 2q cos 2y) y=0 . (2.3)
dy’

Equations (2.2) and (2.3) describing the motion of the charged part-
icles in the field are “Mathieu type equations”. The behavicur of
the particles is thus determined by the properties of the solutions

of thoss equations.

AN



The Mathieu equation is a linear, second order differential
equation with constant periodic coefficients. Mathieu, in 1868,z
while determining the vibrational modes of a stretched membrane
having an elliptical boundary, obtained an equation of the form

2

Q,
<

+ (a=2q cos 28) v =0,

[

ds
This equation is considered to be the normal form of a Mathieu
equation. We wiii apply, in our case, the normal form and proceed
to solve the equation

2
X

[}

+

o

(a=2q cos 2y) x = 0. (2.4)

&.

Negative values of q, or a phase shift of + -;1 applied to equation

(2.4) yields the equation doacriia:lnq the motion of the charged particles
in the x«direction. Negative values of “a” yield the equation for the
motion in the y-direction.
2.3 Periodic solutions

The solution of equation (2.4) takes different forms according
to the values of "a” and q. For the present, we shall confine our
attention to appropriate solutions, periodic in y, with period w or
2. One should note that the solutions to be obtained are by no means
general solutions, but will serve as a guiding line towards understanding
the general behaviour of the solutions which will follow later. As a
consequence of the periodicity,”a® has definite values called gh_gr;-
acteristic Numbers.

When g = O, the solution of equation (2.4) becomes quite simple
and will include terms in sin mx or cos mx, where

a-mz , m=1,2 8, eto.

LI
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We shall adopt the convention that the coefficient of cos mx and
sin mt is unity for all q,z without any loss of generality, since we
will discuss each type of solution separately.
When g ¥ O, for the solution of equation (2.4) to have period w or
2, "a” is to be a function of q.3

Let

a-mz + a,lq + azqz + - . ®© o » .

To illustrate a rnethod of finding a particular solution we

takea-mz-l

For q% o

2.3.1 Cosine-series solutions

let

2

x= cosy + gg (y) + qcz(r)+--- , (2.5)

since the solution reduces to x = cos y when g = O,

Thus
xn = dledy2 = - cos Y + q cln + qzczal + - - = .
where
dzcl
cl” = 2 R
dy
Hence

2
ax = cos y + q(cl+a1cosr)+q(cz+a.1c1+o.zcosy')+----

Substituting into eguation (2.4) and equating coefficients of 1like
powers of q, we get

o
gt cosy =~ cosy =0

o- L4 - - -
q°: cy” +c) - cos 3y + (al 1) cos y = 0,

»



Hence
(D2 +1) o, = cos 3y - (a.l-l) cos y ,
where 4
D= g; and I)2 = d—-z .
dy

The particular integral for the second term on the right hand side, vis.

(a.l-l) cos vy gives

% \'0.1-1) ycosy |,

which is nonperiodic.
Thus

=1 and o,” +¢

o 1 1

= cos 3y

so that

c, = zocosdy .1 cos 3y

1 9«1 8 ’

similarly, equating the coefficients of q2 we Qet

c” + ¢ +a.c1-2c cos 2y +a, cos y=0 o

2 1 1 2

Hence

1 1 1
°2"+°2 8<:mlay+e<:oaSy+(B+u.z)<:osy'-0.

Following the same reasoning, we obtain

oo~

az--

so that

1 1
» - - - -
c:2 + c2 g cos 3y g cos Sy

or

1 1 .
Cy = = ﬁc“ 3y+192 cos S5y A

-, /
h

i

A
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Proceeding in the same manner for higher orders of g we obtain the
coefficients o and ¢ and upon substitution in equation (2.5) we get a
solution of Mathieu’s equation, periodic in y with period 2. It is

denoted by col(nq ) and represented by the series

1 l1 2 1
cel(y,q) = cos y ~ §q cos 3y + 519 (-~ cos y + 3 cos Sy)

~§%~q3 (-g-coa Sr'-%cos Sy+%—ecoa 7y)

[ 4

1 4 .11 1 1
* 2098 ¢ (=§ cos 3y + 5 cos Sy - 17 cos Ty

3

Al

+ -%6 cos 9y) + O(qs, 0

[

The value of “a” necessary to yield this solution, i.e. the

Characteristic Number is

1 2 1 8 1 4.1 5 6
a=1+9-~53a" 579 15569 *3eeegd *0la) .

The notation com(r,q) signifies a cosine type Mathieu function of
order m, which reduces to a multiple of cos my when g = O. It is clearly
seen that there is an infinite number of solutions of this form which
are even periodic functions in y.

2.3,2 Sine-series solutions

Conaidering the case that m2 = ], but now assume a solution of

the type

xasiny*»qsl(y)+q232(y)+------

and proceeding in a manner similar to that adopted in section 2.3.1

we obtain a sine type of Mathieu function designated scl(Y.Q) as



alZn

sol(y,q) = gin y - % q sin 8y + lz q” (sin 8y + % sin Sy)
- g%i'qs (% sin 3y + % sin S5y + %3 sin 7y)
1 4 11 1 1 1
7058 ¢ { = 3~ 8in 3y + 3 sin 5y + 13 sin 7y + 180 sin 9y)
+0(a°)

provided

1 2.1 8 1 4 11 s 6
a=lqg-g9 *514d 536 7 oges 9 * Ol -

[ |

2.3.3 Soiutions of higher order

One can proceed in a similar manner to evaluate the solutions of
Mathieu’s differential equation for m:> 1 and also compute the Char-
acteristic Numbers a . bm corresponding to solutions ccm(y,q) R
sem(r,q) respectively.

One obtains the following values

a =olg?, 1 4. 29 6 68687 8 . 10,
o 29 " 1289 " 32308 9 " T8s74368 I q
1 2. 31 8 1 4 1 5
by=l-g-~ga 9 715369 ~ 36864 9
* -—-22.— 6 -ués—- 7 - —-Lsé—--- 8 -+ 0( 9‘
589824 7 " 9437184 I " 113246208 ¢ q.
a @ replace g by ~g in the expression for b1
, L2 _S__ 4 _ __289 6 21391 8 10
by =4~ 759" - 13834 9 " 55076240 ¢ ' dsseer1azeo0 ¢ * Ola )
a =4 .5 b I8 4 1002401 6 1669068401 8, 0(ql)
2 229 T 73824 9 79626240 7 " 458647142400 3 q
i1 8, 13 4 5 _ 5 _ _1961 6
by ~9+ {59 59 20480 9 * 18381 9 " 23592960 I

898 . 7. 08
104857600 9 9



3 replace g by ~g in the expression for bs

b, = 16 + &= q? - ML 4 10049 __ 6, (.8

4 30 864000 ¢ * 2721600000 9
: 1 2 438 4 5701 6 8
a, =16 + 559 * 564000 ¢ " 7721 q +0(q")
1 2 11 4 .5 37 6 7
by =25 + 339" * 574717 9 " Te¥ese I * sojersses ¢ * Ola))

replace g by =~q in the expression for b5

1 2. 187 4 5861683 6 8
by = 36 + 359" * 73304000 ¢ " 32985987200000 9 * 0(a’)

1 2 187 4 6743617 6 8
8 = 36 + 359" * 13304000 I * 97935087200000 ¢ * °la’)

When n) 7, the following formula’ is correct up to (and including)
the term in q6
2 1 2 Sm2+7 ‘
8 ¢ by Wt ———a ¢ 7 .9, 2
2(m“-1) 32(m°-1)" (m“=4)
ot osem?ez0 6

q+--~.-

64 (m2~1)° (m2~4 ) (m>-9)

These formulae are used to calculate “a” when g is adequately sma'l
and of either sign.
It should also be noted that

1. The functions: ce, , se {n=0,1,2, = =~ = =) are periodic

2n 2n+2

with period m.

2. The functions: se, .1 (n=0,1,2, -~ = = =) are periodic

“®on+1 ¢
with period 2.

3. All the above functions have n real szeros in the region

(o] < ‘Y<1’1/2..
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1% and b1 ' bz-b6 in

the range g = O ~ 40 to 10 significant figures. Plotting these re-

Inco‘ has tabulated the values of ‘o , &

sults in Cartesian coordinates yields the chart shown in Pig. 2.2.
Upon examining the chart, one arrives at the following conciusions:
a. The chart is symmetrioal about the a-axis and so are

the characteristic curves a n and b

b, Characteristic ocurves &yl and b2n+1

c. .xcept for the a, curve, each characterjistic curve inter-

2n+2 °
are .asymmetrical.

sects the g-axis twice, i.e., each curve has two meros.
d. Two characteristic curves do not intersect.

2.4 General theory

We will now proceed tc analyse the s>lutions existing in the dif-
ferent regions of the chart of Pig. 2.2. In order to be able to arrive
at a complete understanding of the different types of existing solutions,
we must first discuss the general theory of Mathieu~type solutions
(functions), deducing the regions of stability and instability and there-
by arriving at the basic understanding of the mass filtering action upon
which the mass-spectrometer operates.
2.4.1 Solutions with period n

The following discussion applies to any linear differential equatic..
of the second order with single-~valued periodic coefficients, an example
of which is the Mathieu equation in question.

If yl(Y) and yz(r) be any two periodic solutions which constitute
a fundamental system, the complete solution is

y = Ayl(r) + Byz(r) .

If the period of each of the solutions is f, then

|
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yl(rm) and yz(r*ﬂ)

are also soluticns. In aceordance with the thoorys
yy(r+m) = ayy, (y) + agy,(y)

Yalrim) = By, (v) + Boya(y)
vhere a . a.z , Bl ’ Bz , are constants determinable from the con-
ditions at y = O say.
Thus
y(ysn) = Ay, (ysm) + By, (yem)

- A [alyl(r) : azyz(r):l +B [Blyl(r)
+ Bzyz(r)_]
= (Aa; + BB,) y,(y) + (Ra, + BB,) y,(y) .

If a constant @ could be found such that

(Ac:t1 + BBI) =gA and Ultx.2 + sz) =gB

then we can write
y(y+n) = gy(y)
or
A(a1'¢) + BBl =0
giving
-A/B = Bll(a1-¢)
and
Auz + Bﬂz = ¢gB

giving

-A/B.B.'.'E .
)

L3
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Thus
& - !‘1",
or

o - (e, +8y) 8+ (a8, - a8) =0 .
o ., Gy, ’1 ' pz , could be easily determined from initial conditions,
hence obtaining the required values fer ¢.
Considering Mathieu’s equation, let the constant
o=
where p is a number dependent upon the initial conditions and the
paramsters "a” and q.
Define aleso in general*
#(y) = ¢ Myly) ‘
which incorporates the time dependence of ¢ through y.
Thus

“u(y+m)

#lysm) = o y(y+m)

- o P irtm oy(y) = o™ y(y) = g(y) .

80 that
#(y) is periodic in y with period w.
Since y(y) is a solution of the type of differential equation under
consideration, it follows that "7 ¢(y) is also a solution.

Complete solution of the eguation
By virtue of periodicity w, taking

] 2rri
o(y) f oy ®

*The solution is defined in this form for easier manipulations since
Fourier expansion will be applied later.

[
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g(y) = T czro'zm

r [ 4

In general, p = a + iB, a,B real and g ¢(y) is a formal solution of
Mathieu’s equation. Since the equation is unchanged when replacing
vy by =y, o MY ¢(=y) is an independent solution, provided a ¢ O or
when a = O, B is nonintegral.

The complete solution of Mathieu’s equation

d—% + (a=2q cos 2y) y = 0
dy’
is therefore
yly) = AT £ o, o¥7 4 BeTH £ o, o"2 (2.6)
r r

A and B are arbitrary constants evaluated from initial conditions.

Upon examining the solution obtained, one can readily see that,
since the summation terms are both periodic, the stability of the solue~
tion will depend on the value of u. Three cases arise

1. u real: yly)—sooas ¢ — ™.

The first part of solution is, therefore, unstable and the
second part is stable. The complete solution is thus unstable.

2. poomplex: i.e., u=a+ ipandas0 ,

so that
y(y) — oo as y—s 0 (solution unstable).
S. pu = 1Bt we obtain the stable solution

.(2r+B)yi + BL o .-(2r+B)Yi
r or

y(y)=AL o
r r

If 8 is a rational fraction p/s, the summation terms are

both periodic, with period 2smw.

L
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When $ is irrational, the selutien is oscillatory, but bounded
and non-periodic, i.e., the solution never repeats itself at
any time interval.
In actual applications, it is possible to arrange that u ba
either real or imaginary, but not complex and that 0 8 < 1
for convenience.
2.4.2 Solutions with period 2n
Take 2tv to be the period of ¢(y), then
pler) = p(m)
ylom) = @ "7 g(er) and  y(w) = &*" g(m)

so that

=21y

y(rr) - o yl-rr) =0 ,

Similarly

-2".“ y'(-") =0 R

y'(n) = e
Substituting y = Ayl(r) + Byz(‘)’)
gives

Aly, () -g ™ 2HT yy(=sm) + B (y,(n) -e"2um y,(=m)) =0
and

Alyy*(m) ~e"2Ty 7 (em)) + B (y,’(m) ~e" Ty s(-m)) =0 ,

For A and B nonzero, we get

.ﬂlﬂ_ P-z- .3""+1-o ’
C
where
D= yl(-n) yz’(n) + yl(ﬂ') yz'(-ﬂ) ~yz(-w) yl'(n) 'Yz(ﬂ)yl'(-ﬂ)
and

c? = y)(m) y," (M) =y, (M) y " (M) = y, (7] y,"(=m) =y, (=) y,*(=m)
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Thus

cosh2un = -25 .
2C

This equation is also valid for period nw (n:;> 2). This equation
determines the value of u once the initial conditions are known.

To make u either pure real or pure imaginary (u = i8; O <: B <: 1),
when the parametric point (a,g) lies in certain regions of the (a,q)
plane, it is essential that:

In the solution y = ¢"7 @(y), #(y) should have a period of 2m
instead of n. This follows from a close inspection of equation (2.6).
The results previously obtained are applicable if for 1w we write 21,

take

.(2r+1)yi

ply) = f Corel

and also change 2r to (2r+l) in all the infinite series.

The form of solution when u = if; O B 1 1is, therefore,given by

y(r) = A f cyp OB (2r+B)y (2.7)
and

yz(r) =B f o sin (2r+8)y , (2.8)
so that

yly; =A L c, cos (2r+B)y + B L Cor sin (2r+B)y .

r r

The initial conditions are substituted to determine the arbitrary con-
stants A and B.

2.5 Practical form of solution*

*This method is introduced at this stage since it was found to he the
best method by which we could fully determine and understand the stable
and unstable region of the a-g plane.
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As previously illustrated, from the theory of linear differential
equations one knows that the solution is of the type
y = A" g(y) + BHY y (y) , (2.9)

where A and B are arbitrary constants, p is a constant depending on
the parameters "z” and g of the differential equation. The functions
oly), J (r) are periodic in y. For certain values of “a” and q, the
constant u vanishes, and the solution y is then a purely periodic
function of y, but in general, u is different from szero.

While the general character of the solution from the function
theory point of view is known, its actual analytical determination
presents great difficulties. The chief impediment is that the constant
p cannot readily be found in terms of "a” and ¢.

Whittnhrs has solved this difficulty by introducing a new parameter
in place of "a” which is denoted by* a. The parameter p whose value is
required, and the parameter ”"a” itself will be expressed in terms of a
and the parameter q, so that when “a” and q are given, a could first
be found and then find u from o and g and ultimately obtain the solution
y of the equation.

As previously illustrated, the periodic solution of the equation:
is a form of Fourier infinite series expansion. This form of series
suggests tha! they may be degenerate cases of a general solution of

Mathieu’s ecuation, having the form

y, " Y uly,a)

*Note that a is a parameter here and not the constant previously em-
ployed.
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where

u = sin(y=a) + s, sin (3y-a) + 85 sin(Sy-a) + = =« = =

+ ¢y cos (3y=a) + o, cos (Sy~a) + = = = = '

3
where a is a new parameter.

Under this definition, the two solutions Yy and Yq will correspond
to putting a = O, and a = 7/2 respectively in the above general solution.

It is also observed that there is no term in cos(y=a), this really
constitutes the definition of a. The possibility of obtaining series
which remain convergent for all real values of a depends on our choosing
a in this manner. The coefficient of sin{y~a) is taken to be unity, which
amounts to fixing the arbitrary constant by which the solution is multiplied.

Since a, g and a are interrelated, we assume

2 3
a=1 +q,f1(a) +q fz(a) +qf3(a) o=

and
1 = qgy(a) + g2, (a) + ¢Sy la) + = = = = =
1 2 3
and take
u(Yoa) = !in()"'a) + th(Y,a) + qzhz(Y'a) + >
where

f, g are functions of a.

h are periodic functions of y, a (periodi®: in.y).
Substituting these expressions in Mathieu’s differential equation,
equating coefficients of q°, ql, qz, - = = = to gero and applying the
periodicity requirement we obtain the values for the f, g and h functions

and we find that*

#It is noted that the generality of the solutionﬁhig not affected by
assuming the sine series expansion, since the cosine series is incorporated
in the value obtained for ”“a” as shown.

L
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a = leq cos 2a + % 2(-1 + % cos 4a) + %; q3 cos 20
1 4l_u JL S LR
+ {59 (§ - 53 °°s 4a) 339 (g cos 2a - 333 cos 6a)
L 6. 833 , 8181 .3 c e
* 3193 9 ( 57 * 316 °°° 4a T °os 8a) (2.10)

leg cos 2a - uz + gs,

1 3 3 3 4
=--3 q sin 2a + 128 g sin 2a 1034 g sin 4a

=

- ;%gg qs(;%z sin 2a - % ein 6a)
+ TE%E: q6 (%%Z sin 4a - %i sin 8a) + = = = - (2.11)

1
3 g(=sin 2a + cs)
Also

1 1 2 1 3 14
8y = - §9*+§ 9 cos 2 -g ( § * Scos 4a)

1 4,-74
+‘096q(9co-za+7C°.50.)+o-..

_L 2 .3 1 424
cy =51 9 sin 2a 513 9 sin 4a + 2098 9 ( 3 sin 2a

+98in6a) + =« ==

-l .1 3 Ao 4. 155 82 c .-
8 =~ Joz 9 153 9 cos 2¢ ¢+ gagp a (= 5= + 37 cos 4a) +

1 8. 1 4
s " " 330¢ 9 * q915z J cos2at - - - -

1 8.1 4
87 %" 9216 9 * o159 cos 2t - -

35 4
€9 = 742368 J sin2a 4 == - -
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Ncte that "a” is an even function of o whiie u is an odd function of «.

Thus the second independent solution of Mathieu’s equation takes the form

Vg ® o W uly, ~a)

2 and Ve congtitute a fundamental system and the complete solution,

with two arbitrary constants, is

v = A" uly,a) + Be *" u(y,-a) (2.12)

It is clearly seen, now, that when a= -nn/2 then u=0, Cy=Cgm - = = =~ = o,

and the series for ”"a” becomes that previously obtained for "al" and

1 1 2 1 3 11 4, _ ..
8y " "8I °529 “15369 *3e86a T " :

Substituting, we obtain the series for col(r,q). Similarly, when a = O
we obtain the series for nl(r,q).

It can be shown that this form of solution will differ from that
previously obtained throug* a constant multiplier. This is to be expected,
since the solution of Mathieu’s equations must be unique.

2.6 Division of the (a,q)-plane into stable and unstable regions

Referring to Fig. 2.2 which shows the portion of the plane for
which the characteristic curves a bm for the Mathieu functions of
integral crder have heen computed, we will consider the region in

Fig. 2.2 lying between a, and b_.

1 2

The curve a, is obtained by substituting « = -n/2 in equation
(2.10). Now, if a = -n/2 + 16 then cos 2a = - cosh 2a whatever the sign
of © and so if g > O is fixed, equation (2.10) shows that “a” increases

with increasing @ until b2 is reached. Now considering the curve bz,
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it has been shown’ that this curve is obtained by substituting a = O

in the expression

a-4+%qz(%-%cocn)+---- . (2.18)

If we let a = 0+1i0 in this equation, it is seen that ”“a” decreases with
increasing © until a, is regained. Thus, between . and bz, with q> o,
a is complex or imaginary depending on whether oq‘\uthn (2.10) or (2.18)
is employed.

Taking a = % n+1® and substituting in equation (2.11) for u in
terms of a shows u to be imaginary. (sin 2a = -i1sinh20).

In the region between a. and b,, therefore, the solution of Mathieu’s

1
equation is stahle. In other words, for imaginary or complex quantities
for a, starting from bz and a, respectively, the solution is confined
tc the region between these two curves irrespective of the value of 6,
thereby producing a stable solution,

We will how discuss the third possibility of values a could have,
viz., real values,

- Starting from b,, where a = O in eq' ation (2.10), taking a to be

9
real, for gq ) ©, “a” increases as a decreases until a, is reached where
a = =rv/2, Since a is real in the intervening region, the series for
p will show to yield u real and hence the solution is unstable for any
point (a,q) in this region. Starting from a, with real values for
o will also show that between Il and bl' an unstable region exists.
Following along the lines of the above argument, it can he shown that
the region between a, (a = ~%v/2) and b3 (a = O) is a stable region.

It is thus possible to divide the (a,q) plane, for g > 0, into

gones in which the solution of Mathieu’s equation corresponding to a
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point (a,q) is either stable or unr cable.
One can also follow a similar argument for q{ O, by writing -q
for g in the previous series and hence divide the entire (a,q) plane

into stable and unstable regions. The result is shown in Fig. 2.8.

Conclusions
1. When the point (a,q) with q> O lies betwaen a_ , b .,

then p is imaginary and the two solutions of Mathieu’s equation are
stable.

2. When the point (a,q) with g > O lies between b, a_
then p is real provided the appropriate form of solution is taken a.?
the complete solution of Mathie.’s equation is unstable.
2.7 Form of solution for dif *erent regions of the (a,q) plane

1. Stable solution:

a. q small and positive*

When (a,q) lies between a, bzn+1 , for the first solution,
we take
yl(Y) - .15‘)’5 <:zr02r"1 - olfY ¢zr(Y) (2.14)
or
yl(r) - f c,, COS (2r+8)y (2.15)
or

yl(r) = oif" gin (2ny - a) + s, 2'n (2y~a)

4‘!48111(47"&)*----

+ ¢, cos (2y=a) + c, cos (4y=a) + = = = =, (2.16)

*This solution is practically suitable for the case when g is small, i.e.,
the series converges rapidly.

L
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there being no term in cos (2ny=a), e.g., if n=l, cz.o_

In these series, B is real and O < B < 1. The coefficients

Cyy ¢ By, 8re obtained as shown previously.

Wher (a,q) lies between a, .. , Pyneg ¢ the first solution is

taken as
i 2
yl(Y) -e BY:'. Carel o( r+lird | 018Y¢z"1(r) (2.17)
or
yl(Y) - f c2r+1 cos (2r+l+B)y (2.18)
or

y,ly) = olBY [sin ((2n+l)r-a) +s, sin (y-a)

+ sin (3y=a) ¢+ = = = - «

®s
+ ¢, cos (y=a) + ¢y cos (3y~a) + - - -] , (2.19)

there being no term in cos [ (2n+1)r-a] , @.g., if n=l, ca-o.

The second solution is obtained by writing - y for y in (2.14)
and (2.17), sin for cos in (2.15) and (2.18) and - 8 for B, - a for a
in (2.16) and (2.19).

When the initial conditions are specified, all forms of solution
yield, naturally, an identical result since the solution is unique.

b. 9 moderate and positive
Same as (a) except that the form represented by equation (2.16)
and (2.19) is usually unsuitable for computation when q> 0.4

approximately.
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2. Ungtable solution:
a. g small and positive

When (a,q) lies between 8,043 ¢ "zn+z the first solution is taken
as
- ! 2ryi WY
yl(y') e :! ., ¢ . ¢zr(7')
or

yl(y) - ow[nin (2ny=-a) + s, sin (2y-a) + s, sin (4y=a) + = = =

+czco-(2¥-a)*c4coc (4y-a)+----.J ,

where u(rnl)> ) and remarks.in,l.(a) apply.

When (a,q) lies between b the first solution

2n+l '’ .2n+1 i

is taken as
uy (2r+l)yi uy
= e Legrne "o fyralr)
or
yl(r) = o7 [sin ((zr+1)y-o.) + s, sin (y=a)

+

aasin(ara)+-----

+ c, cos (y=a) + cy cos (3y-a) + - = -] o

Note that the period of ¢2r(r) is 7w, while that of ¢2r+1(r) is 2m.
b. q moderate and positive: as l.(b).

3. Any solution for :

Replace y by (/2 = y) in the solution for q > 0. In other words,

the obtained stability regions are applicable to negative ions

also in the mass-spectrometer.

,



e R

2.8 Mathieu functions of fractional order

In general the operating point for a defined ion mass will 1lie
within the regions of stability (or unstability). Also, the solutions
corresponding to operating points lying exactly on the (a) and (b)
lines are gquite critical and are therefore not quite adequate for mass-
spectrometric purposes. Therefore, we will discuss in this section
the solutions of fractional order.

A Mathieu function of fractional order p is that which satisfies
Mathieu’s equation and reduces to cos py or sin py when g =~ 0, i.e.,
n® = pz.

In this case p is real, positive and either rational or irrational.

Assuming
ce, (y,q) = cos py + £ qrcr(r) (2.20)
r
se, (y,q) = sin py + L qur(r) (2.21)
r

as= p2+£Arqr
r

and proceeding analytically in the same manner &s in section 2.3 we

obtain the following results

1 cos + 2) cos - 2
OOp (Y,Q)'COI DY-';q ﬁw-—ﬁk

1 2 cos + 4 + So8 -4

2 9 p+1) (p + 2 p=1) (p=2

+

3
-

o (0% + 40 +7) cos (p + 2)y
0

(b -1 (p+1)% (o +2)

[

2

- _(23_-4g+7)c00(g-_2[)v
(b+1) (p+1)(p-1)3 (p-2)

cos (p + 6)y . o8 (p - 6)y
3(p + 1) (p +2) (p +38)  3(p-1) (p~2) (0-3)

+

+ = -e-

(2.22)

v,



1 sin + sin -
up(Y.CI)-linpr-4q x o =1
i 2 _sin + sin - 4 . -

MR T 7511'{§'731%Z§T -Dl-n °* (2.23)

1 2 (502 + 7) "

L S IR QY. a

2(p° - 1) 32(p° = 1)" (p° - 4)
9 o* + 53 0% + 29 6

+ g 44 q + o ® o 0 eae (2.24)

64(p2 ~ 1)% (p% - 4) (0% - 9)

9
These formulae are suitable for computation when q’lz(p2 - 1)<< P, p> o,
:l.o., the series converges rapidly. Since “a” has the same value for

both solutions, the complete solution becomes
y=A ce, (y,q) + B s (v.q) . (2.25)

where A and B are two arbitrary constants and p is non~integral. Also

note that in this case: p = m+8.

2.9 Application of the previously outlined theory to the mass-spectrometer
In the mass-spectrometer case, we are dealing with two Mathieu dif-

ferential equations simultaneously, desoribing the motion of the charged

particles in the x and y directions as previously shown. The require-

ment is thus, that both solutions (in the x and y directions) be stable

simultaneously.

Let us now proceed to analyse the equations simultaneously.

2
d—-’zs + (a+29cos2r) x=0 (2.26)
dy
and
dz
L - (a+ 2qg cos 2y) y =0 (2.27)

dyz

Y,
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Apart from the phase shift, the difference between the two equations
and the normal form is the fact that "a” in equation (2.24) is negative,
i.e. the equation of motion in the y~direction results from substituting
(«a) in equation (2.27) (and the phase shift which has no influence on
the stable or unstable properties of the solution). Referring to the
(a,q) chart of Fig. 2.3, which shows the regions of stability for the
solution of Mathieu’s equation, we observe

1. Equation (2.26) for the x-direction motion has *a” } O and
hence the stable solutions of this equation are confined to the upper
half of the chart.

2. Equation (2.27) for the y-direction motion, has ”a'<: O and
hence the stable solutiens of this equation are those of the lower
half of the plane.

One can now easily determine the regions where both solutions are
stable by simply folding the plane about the g-axis. Several regions
of stabllity are obtained, the largest of which is that bounded by the
qg-axis, the a  curve and the b1 curve. This region is that which
determines the operation of the mass-spectrometer and is hence of
greatest interest to us.

The first step will be to plot this region more accurately using

the formulae for e, and b1 obtained previously.

1 7 4__2 6 68687 8
& ="39 * q : 9 * 18874368 ¢

10
128 23 +0(@™)

and

1 2. 1.3 1 S 6
by=l-q-§a *+§9 ~7ss¢ 9 *0la)

Since, in this region 04:<z<:1, one can neglect terms in powers of

Yy
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q> 4 in bl and power of q> 6 in ae

Thus
S . A . (2.20)
and
bl-loq-%qz*%;qa-%ng‘O (2.29)

A plot of equations (2.28) and (2.29) is shown in Pig. 2.4 in which
we distinguish four different regions,

Region 13 Solution for x stable, solution for y unstable; thus
a region of unstabl: particle motion.

Region 2: Bo'h x and y solutions stable. Hence, when the operating
point lies in thi~ region, the particle motion is stable.

Region 8$: GSolution for x and y unstable; thus motion unstable.

Region 4t Solution for x unstable, solution for y stable; thus
motion unstable.

We conclude that, if the parameters (U, V, m, w, ro) for a specific
particle of mass m are such that the operating point lies within region
2 of the stability diagram of Fig. 2.4, the motion of the particle is
stable and hence it will pass through the quadrupole field attaining
a finite amplitude of vibration and could thus be detected at the out-
put of the mass-spectrometer. If the operating point lies outside
regicn 2, the particle will oscillate with exponentially increasing
amplitude and will eventually be lost at the electrodes. This is the
principle of “mass filtering” upon which the mass-spectrometer operates.

Referring to the original equations of motion of the ions, developed

in section 2.1, we defined “a” and g as follows:

1,
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a= & °2Uz (2.30)
mr “w
0
and
q=- 4 '2"2 (2.81)
mr “w
o
where

U = amplitude of applied dc voltage

V = amplitude of applied rf voltage

e = electron charge

w = rf frequency

r, = field radius

m = mass of charged particles
It is observed that the ratio a/g = 2U/V represents a straight line in
the (a,g) plane in Pig. 2.4, and passing through the origin with slope
2U/V, therefore, independent of the mass of the particle. In other
words, for a set ratio of U/V, the operating points for all masses from
0O = 00 will lie on a straight line through the origin. It is thus
evident that only these mass values which lie in region 2 of Pig. 2.4
will have stable solutions and hence, could be detected at the output
of the spectrometer. As the line approaches the vertex of region 2
(slope increased) the number of masses related to ions having stable
orbits is decreased.

The slope of the line, i.e, 2U/V, thus determines the resolution
of the mass-spectrometer.

We will now consider region 2, the stability region, in more

detail and discuss various important parameters pertaining to the

motion of the stable ion orbits.
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We have shown that i1 = iB in the stable region and referring to
section 2.4.2, the general solution of the equation of motion for the

charged particles in this region ia*

xly) =A L c, . cos (2r + B)y + BT c,_ sin (2r + By (2.32)

r r

or 0 sl

x(wt) = AL c, cos (r+f/2) wt + B L Cop sin (r+8/2) wt. (2.338)

2r

It is o be noted that A and B contain the initial conditions,
i.e., the injection conditions of the ions, whereas the coefficients

¢,. and B depend only on “a” and gq. Thus the paths of all ions of the

2r
sane mass differ only, in their motion, in the constants A and B
corresponding to the difference in their initial conditions of in-

jection, viz., X x to' where io is the initial velocity. They

o'
all have the same frequency spectrum of vibration w, = Bw/2, w, = (1-B/2)w,
w, = (1+R/2)w ete.

Ions of different mass have, on the other hand, different values

for the coefficients ¢ and 8 due to their different operating points

2r
in the stahility recion. The frequency spectra of their motion, and
especially the fundamental frequency w, * Bw/2 are, tterefore, different.
2.9.1 Iso-B-chart

Referring to Fig. 2.2, it 1s noted that when the para-

metric ncint lies in a stable region, egquation (2.24) of

section 2.8 may be adapted to calculate PB. When q::> 0, as

*We are only going to nonsider from now on the soclution of one of ttre
two equations of motion since the stabilitv is not affected hy the phase
of injection.

L\
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is the case and if the curves bounding the region are l.(lmnr).
(upper), -> 0, we take p = m+f and from (2.3¢) follows

n+1
2
2 1 2 (sp2 + 7) ‘
R e q
2pd - 1) 32002 - 1)% (o2 - 4)
- ___9.L§._§u * 331 q + 0(g®) (2.34)
64(p2 = 1)° (o2 - ¢) (p° - 9) ’

As mentioned previously, this formula is usable under the condition
that |a| > qu/z (f:»z - 1)| and that the ratio of each of the terms

r

in g% te its predecessor 1- small. For a first npprokiution we have

02 = a. Inserting this in the term in q> and omitting the others, the

second approximation is

2
z-(f’:'n- . (2.35)

Substituting from (2.35) into the second term on the right hand side

of (2.34) and p2 = a in the third and fourth, yields the third ap-

proximation
2 SCOII 2 (Sa+7) 4
p*=a- 53 9 - —p q
2(a - 1) - g 32(a - 1)" (a - ¢)
9a% + 58a + 29 6 8
—5 q -0(q)
64(a - 1) (a~4) (a - 9)
Since p2 = (m + B)z, we obtain
Ba - (a-%) - % - jig;D gt
2(a - 1)° - 32(a = 1)" (a = 4)
9a® + 588 + 20 & -m

65(a ~ 1)° (a ~ 4) (a = 9)

1,
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provided no denominator vanishes.

When the above conditions do not apply, B may be calculated using
the continued fractions method as described by Mcl.lchlnn.3

In our czse, the region of interest for the operation of the mass

spectrometer lies between a, (folded) and b, of Fig. 2.4.

1
Consider region 2, the region of stability of the solution to

Mathieu’s equation, {.e., the region between a (folded) and b In .

1
this region 0 8 { 1 (p = m+B), we proceed to calculate for any assigned
8, say 0.6, the ”a” for g increasing from serc {n small steps, and the
points plotted give the characteristic curve 8 = 0.6. By cu. ™mting a
series of curves at intervals of, say, B = O.1, we can plot an iso=~, -
chart of the type depicted in Fig. 2.5.

These is0~8 lines will prove very useful in analysing the line
form of mass peaks as vill be shown later. It should be noted that
one could proceed in a similar manner to obtain the iso-u lines in
the unstable regions of the solutions of Mathieu’s equation.
2.9.2 Injection conditions and maximum amplitude of vibration

It was previously mentioned that the st bility of the path of an
ion in the spectrometer depends solely on the operating point (a,q)
and not on the ion’s injection conditions. But for a stable ion to
reach the collector, it is evident that the amplitude of its vibration
must remain smaller than the distance T, of the electrodes fx;on the
field axis, f.e., x . ymx< r,. Since the maximum amplitude of
vibration depends on the operating point as well as on the initial
conditions of the ion motion, the influence of the injection conditions

must be investigated.

1,
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The maximum amplitude, obtained from equation (2.33) in the

previous section is found to be

'x-.xl - \/a2.+B? . f\"zrl . (2.36)

One should note that, in spite of the fact that the solution
x(y) is not exactly periodic, after only a few vibrations, the actual
vibration amplitude very closely approaches xm‘x.8

The calculation of A(yb . xo) and B(Yb A xo) is based

on using the basic systems of solutions x,(y), and x,(y), i.e,

x(y) = Axl(r) + sz(r) . (2.37)

Differentiating (2.37) with respect to y, and inserting the initial

conditions (x° , (gﬁ) , Yb) in the equation and subatituting in

X
[+

equation (2.36), we get
= l . ] ’ - . 2
| e = ¥ E e [(xo xg"(r,) = x "%, (r,)

2 1/2
+ (xo’- xl(yb) -x, xl'(yb)) :] {2.38)

where W is the Uronski determinant, and x’ = g% .

For any given phase of injection Yo ¢ xl(yb), xz(yb), xl'(yb).
xz’(yb) are constants and the quantity under the radical in equation
(2.38) is a fourth order expression in s and xo'. Equation (2.38)
represents an ellipse in a (xo,xo') plane. Setting LR A this
ellipse connects all points (xo,xo') which, for fixed Yo ¢ have the
same maximum amplitude of vibration r,. For different phases of in-

jection, a family of ellipess, with the parameter Yo ¢ is obtained.

’
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Calaoulations for a = O and B = 0.2, 0.5, 0.8 were carried out
by Pilchor.8 The results are presented in pig. 2.6.

It can be seen that the maximum amplitude T, is larger than the
initial coordinate for all phases of injection except Yo = /2, where
they could be equal. Thus, even in the center of the stable region, i.e.,
with best focusing, only a certain portion of the total field cross
section can be utilized for the injection of ions.

Injectior parallel to the axis
y.

X
It is observed that the maximum amplitude ;E ' ;: are single
° )
valued functions of B. This makes it possible to construct lines of

Y
equal :! R ;; , instead of iso=f lines, in the stability diagram as

b 4
-] -}

shown in Pig. 2.7. Setting Xy = Tor then x_, Yo represent the greatest

°
distance off the field axis at the point of injection of the ion of

stable trajectory, at which this ion, with the specific position of the
operating point in the stability region, can still traverse the quadrupole
field, whatever the ion’s phase of injection may be. -

As the operating point is moved along the mass line into the stability
region, an increase in intensity will result, beginning at the limit of
stability, since as the distance from this limit increases, even the
ions entering the field farther away from the axis will be focused
{allowable X, 0 Yy increase towards the inner part of the stability
diagram).

It is thus possible to attain 100% transmission provided the
injection diaphragm is not too large. When the second limit of stability
is approached on the mass line, a decrease of intensity will occur. The

resulting observed mass peak, in this ideal case will be a trapezoid

with sides of unequal slopes and a flat top representing the region of
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100% transmissian. It is seen that this case could only be achieved
at low resolving powers and/or small diaphragms. At high ruolviw' .
powers, the line form changes to triangular, the intensity thus de-
ocreases and is ﬁwornly proportional "to the resslution.

It has been shown that for a specified px,y and setting X, =Ty e
there is an upper limit for x ,y, = f(uto) for which the icns cen still
traverse the quadrupole field. By averaging over all phases of injectionm,
one obtains the probability that a “stable” ion having initial conditions

X, . Y, (xo - 3'r° = 0) can traverse the field. It is found that this
probability decreaséas very rapidly above a certain value X, . Y, which
are a function of B and ro.

2.9.8 Resolving power

It was previously mentioned that the resolving power of the instru-
ment is mainly determined by the slope of the line of operation. The
resolving power can thus be increased through increasing the slope of
this mass line in the stability diagram by appropriately choosing the
ratio U/V; this displaces the operating point higher into the upper
corner of the stability “triangle”. This means, however, that the
operating point will approach very closely the limit of stability, with
a resulting unavoidable increase in the maximum amplitude of vibration
of the stable ions.

In order to gain a quantitative appreciation of this effect, the
maximum amplitudes of vibration of ions, having defined initial con-
ditions, were calculated numerically by Paul, et al.,8 with specific
reference to the position of the operating point. They found that for
a resolving power above 70, only the region 0.69 <q <0.71 and

O.23<a<).24 is of interest. They assumed that, in this region, the

LT



stability boundaries and the iso~f lines in the stability diagram
could be approximated to straight linees (Fig. 2.7). The vertex of
the stability triangle lies at

= 0.703& .nd - 0023699 g

Aimit & imit

Paul, et al,have also calculated the relation between a and B , By
for & value of g = 0,70600, whete

ﬂx = B corresponding té the x-directicn vibrational motion
and

By = B corresponding to the y-direction vibrational motion.

The rel:tions obtained are:

(1-8_)% = (0.29699 - a)/1.93750 (2.39)
and

Byz = (0,23699 - a)/0.7987S . - (2.40)

Equations (2.39) and (2.40) establish a relationship between the
position of the operating point (a,g) and the respective characteristic
exponents ’x and By. Paul, et ¢1~8'hav0 also calculated the values for
3,9

the coefficients Cop ¢ using the continued fraction expansion

Car :g[(2r+§22 - gz[(zr+§22 (;r+3+§22

Cor-2 l-al(2r+B)z 1-./(zr+z+a)’
g2{(2r+2+§2z $2r+4+gzz t o ooe
l=a/(2r + ¢ + B)z

with the normalisation e, = 1.
Equations (2.36), (2.37), (2.38) enable us to obtain the maximum

amplitudes of ions haring stable trajectories in the x and y directions

s
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for different positions of the operating point f, as a function of the
two sets of initial conditions (wto ' Xy J'to) and (mo A y"o).
Paul, et al, have carried out the caloulations and the results are
represented in iig. 2.8.

Fig. 2.%a shows the results obtained for injection parallel to
the field axis, i.e,,

xo-yo-o and xo,yofo v

Fig. 2.8b shows the case of injection at the field axis of ions having

radial velocities, i.e.,

xo-yo-o and xo,yovio.

One can conclude from the curves that X and /) increase in inverse
proportion to l-ax and By respectively.

We will adopt the conventién of using the half width 4m of a
mass peak at m as a measure of the resolving power as shown in Pig.
2.9. Paul and Rnthorm have obtained an expression for the resolving
power in terms of the parameter "a” when q = 0.706. Their results
could be numerised as follows:

a) For low resolving powers, where Am is practically equal te
the total line width

0.178

% = -O_..ism (2.41)

(g = 0.708)

where a5 706 is the value of "a” at q = 0,706.

b) For high resolving powers, where the peaks beocme triangular

in shape

m_ 0.357
bm ~ 5.23699 - a (2.42)

s
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(Am {8 equal to half the base width approx.). Coabining equations
(2.39), (2.40), (2.41), (2.42) a relationship between 8, X, Yy
anc. the resolving power was derived for injection parallel to the axis

for high resolving powers

*n m 1/2
A (1.8 mjom) . (2.43)

It {s, therefore, concluded that the maximum amplitude increases
only as the square root of the resolution; this is of importance when
one desires to increase the resolving power.

One also obtains from equations (2.39) through (2.42) and Pig. 2.4
the admissible radial velocities of “stable” ions for injection at the

axis

1/2 :
L S < 0.16 r_ w (:—.) . (2.44)

The ions of different masses are required to remain a certain
number “n” of high-frequency periods im the field in order to ensurs
that the amplitude of the "unstable” fons will attain a value larger
than r, . and hence be r iiminated at the electrodes. This number “n*
is a function of the desired resolving pover and sets an upper limit
to the admissible injection velocity of the ions. It was found experi-
nor\tallye that, for resolving powers around 100

na 8.5 (mom)/? (2.45)

This requirement introduces the relationship between the length L

of the mass-spectrometer tube and the accelerating potential. This

was found by Raether'® to be

2y /2

L>> ron(-T“—"-) q

LT
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where Uicc is the acselerating potential. This sets a lower limit to
the length of the tube for practical accelerating potentials.
2.9.4 Stability and acecuracy criteria

The behaviour of the mass-spectrometer is determined largely by
the position of the operating point in the stability diagram. It is
thus required that the parameters “a” and g be stabilised to approximately
1/(2m/tm)of their value.

It follows upon examininc the expressions for ”a” and q that U
and V, the dc and rf frequency voltage amplitudes respectively, be
stabilised to better than 1/2m/Am of their value. Al-~, the limitations
on the frequency w and the field radius r, are more severe cince they
appear in the xpression for "a” and q raised to the 2nd power.

Short spaially limited insccuracies of Ty o however, cannot
esgentially influence the stability behaviour of the ions, since a
displacement of the operating point in the stability diagram can only
be caused by field defects which are operative for many high-frequency

periods.
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Chapter 3

Design Caloulations

In this chapter the calculations of the various parameters in-
herent to the mass-spectrometer will be presented. The choice of the
parameters will be discussed in terms of the requirements set by the
planned experiments.

3.1 Resdlving power considerations

One of the great advantages of the quadrupole-typs masse-spectrometer
is, as mentioned previously, the ease by which the resolving power can
be changed if necessary. A constant resolving power, on the other hand,
is possible irrespsctive of the mass of the ion to be analysed.

In the study of basic collision processes in plasmas, besides
identifying the ions through mass analysis, the efficiency of the mass
analysing instrument is of prime importance since it is desired to
detect ion currents of very small value (of the order of 10~ 1° amps).
The design of the mass-spectrometer was, therefore, based on maximum
efficiency and not on constant resolving power; the only “resolving”
requirement being that the peak at a certain mass is not affected by
the presence of neighboring masses. Theoretically, this means that the

condition

n

=) ™.
as illustrated, in Fig. 3.1, has to be satisfied.
Here

m = mass to be analysed

im = curve width at 1/2 the height.

4
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In i:onoluion, 4o obtain maximum colleeting efficiency, the re-
ulvﬁw power will have to be decreased at low masses for the following
reasonsi

1. At high resolving power, the intensity of the ion beam

current is inversely proportional to the reselution.

2. Aceelerating potential considerations.

The mass spectrometer is planned to operate in a mass range of
1 to 125. The field radius r, was chosen to be 2 om. This choice
was based on obtaining a compromise between the power requirements
(increasss with r:) and the increase of tolerances in initial con-
ditions with larger Tye
3.2 Quadrupele voltage and frequency caloulations

Expressions for the required ac and dc voltages could be cbtained
from the parameters "a” and q as follows:

The expression for the rf voltage amplitude V follows from

oAy
o
or
v-$ ,ozuzq .
Substituting

19

e = 1.601 x 10"~ coulomb

31

m = 9,107 x 10°°" x 1836 x A kilogram

q = 0.706% ,

*The calculations are performed assuming the opsrating point of the mass
spectrometer to be at the vertex of the stability triangle (a = 0.23699;
g = 0.706), i.e., the resolution is assumed to be infinity (ideal).

L



we find
2,2
V=7.287 r ° £° A volts (s.1)

where
o is inom
f is in Me/s
A is the atomic weight of the ion.

The expresaion for the do voltage U is determined by

2 2U o.;égss :
a ¥V T 0.9 ’
or

U=0.1678¢ V ,
so that

U - 1.228 roz £2 8 volts . (3.2)

Choice of Frequency
The mass selection is obtained through varying either the frequency

or the voltages or both. In this spectrometer, both the frequency and
voltages will be varied in order to stabilise an ion with specific mass.
The frequency will be changed in steps, thus determining the mass range
and the voltages will select the masses within the set range.

It i{s to be noted that the rf and dc voltages should be varied
such that the ratio between them remains constant (U/V = const.) for
maintaining a constant resolution of tf\o instrument. The reason for
the simultanecus monitoring of freguency and voltage is based upon the
high-frequency power requirements and the desired mass range.

The high-frequency power requirement for the quadrupole system

was calculated by Paul et 11.1 The following expression was obtained:

s



N=6.5x10 " x 3 watts, (s.3)

where

power required in watts
capacity of the system in ppf

> Q =
]

atomic weight of the ion

f = rf frequency in Mc/s
field radius in em

-
L

Q = quality factor of the output circuit.

It is observed, at first glance, that the required power is a
function of the fifth power of the frequency®. Since the aim is to
achieve a wide mass range with reasonable power and voltage require-
ments, as well as rcsolution, a detailed investigation of the behaviour
of power and voltage with atomic mass and frequency is necessary.

With
r, = 2 om., substitution in equation (3.1) gives

V =7.287 x4 x £2 x A
= 20.148 £2 A volts . (8.4)

The capacity of the system is found experimentally to be ap-

proximately 100 upf and when choosing a reasonable value for Q

*This is only a first order approximation since the dielectric constant
of the system changes with the introduction of the charged particles and
thus with frequency. The equivalent dielectric constant

ne?

k =] e 3 the actual expression for power will be:
ed m wz

(-]

N=C Azf's-c Afa,whorcclando

1 2 are constants.

1,
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(100 say), we get

2.5

Ne6.5x104x1.0x18A2% atts

=1.0¢ x 10°22%2¢5 - (3.5)

A plot of required voltages and power versus atomic weight A for
different frequencies is shown in Pig. 3.2. It follows immediately that
in order to attain a wide mass selection range with reasonabls ranges
of rf voltage and power, one should use as low & frequency as possible.
It is not possible, however, to use very low frequencies, since, in
this case one has to increase the length of the spectrometer tube and/or
decrease the accelerating potential for the ions in order to fulfill
the condition that the "vibratimg” ions should remain a definite
number of high frequenoy periods in the field to obtain satisfactory
resolution. This point will be discussed in detail in section 3.3. A
compromise was made and the length of the tube was taken to be 100 cm.
The required frequencies are thus

0.5 Mc/s to cover the mass range 125-50

1.0 Mc/s to cover the mass range 50~12

2.0 Mo/s to cover the mass range 12-1,

Under these conditions, using equation (3.4) and (3.5), we fird that
the required rf power will vary between the approximate limits of 50
watts for A = 12 and a few tenths of a watt for hydrogen.

The required rf voltage V will hence vary between 1450 and 116
volts. The plot of V versus atomic weight A, shown in Fig. 3.3 will
serve to calibrate the instrument.

3.3 Determination of maximum fon acclerating potentiais
The accelerating potential applied to the ions entering the

spectrometer determines, for a fixed tube length, the number of high

e
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frequency periods the ions remain in the gquadrupole field since there .
is no field force directed along the axis of the tube. With reference
to chapter 2, the minimum number of high frequency periods recessary to
ensure complete loss of unstable ions at the electrodes and hence good re-

solution was found experimentally te bol

)1/2

n & 8.5 (g; y
Hence, the drift time of the ion through the field must be larger
or equal to n high frequency periods. We will now proceed to cbtain
an expreossion for the maximum allowable aceélerating potential from
the above relation.
The velocity of a singly charged particle in terms of its energy
in electron volts is given byz
v 5.93 x 307 1/2
e = Ll
(A ;:)
where
u is the energy in electron volts
», ;l the mass of the hydrogen atom
L is the mass of t)e electren

A is the atomic weight of the particle

e 1836 -..

Total time needed for n high frequency periods ia

T = &= n
i

Minimum time of ionic flight through the guadrupole field

-6 1/2

10 n
3.5 (z:) sec. ,

total " f

T

s
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so that the maximum allowuble veleaity of ions is

2 8 1/2
v « 2L 10 Lf Am, cm/sec. .
] *otal 3.5 »
where
L is the length of the field in meters
f = frequency of applied voltage in Mc/s.
Hence
8., ¢ am*'? s, x10 12
10" L 33 (;") —"———.‘-72 u
‘ (1836 A,

s8¢ that the maximum accelerating potential &n is given by

10 Lt ‘m
aax = (35 x5ey) X186 A O
or
2 2 im
By = 4-26x100 L2 £2 A8 o1y )

The advantage of lowering the resolution when analysing low
mass values is again eviient. It enables the use of a shorter tube
length, while maintaining en appropriate value of accelerating potential.
Moreover, it avoids, the bulkiness of a larger tw. s, hence, cutting down
the pumping and bakeout requirements. For L equal to 1 meter, we have

2,2, im
“mnx = 4.26 x 107f"A 2

The resolutions chosen, and hence the resulting required accelerating
potentials for the three different mass ranges are as follows:
mass range: 1-12 12-50 50-125
resolution: 1:100 12250 1:250

maximum accelerating
potential in volts: 18~216 20.5-85 21=53 ,

\s



A plo. of accelsarat'ng potential versus atomic weight A is shown in
Pig. 3.4.

When we take the minimum condition for the resolving power, i.e.,

Am

i

we obtain

B = 218 LY volts ,

The smallest frequency used is 1/2 Mc/s, so that for this frequency

oy = L2 volts,

It 1; seen that the choice of a length L smaller than 1 meter would
give rather low and impractical values for the maximum allowaeble ac-
celeration potential.

3.4 Calculation of dc voltage requircments

It was shown previously that the ratio

do_applied voltage
rf applied voltage

meter. In this case, the resolution is variable in two steps 1:100

determines the resolution of t}{q Bass-spectro-.

for mass values 1 to 12 and 13250 for mass values 12 :to 125.
At g = 0,706, the relation between tho_roﬁoluti’on and the values

of "a”, for high resolving power, as is the case, was given in chapter

2 as

B 0.357

Am 0.23699 - a 206
Step I

w - zas:;a'f" )
y 80.706
so that )
(1)

a8 206 - 0.23699 - 0.00857 = 0.23342

o
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Thus
(1) (1)
U R | - 0,23342 -
5 79 250,706 - 0-16531 .

Substituting the range of variation obtained for V, we find that

o) un vary from 20 volts for hydrogen to 240 volts for A = 12.

Step II
. %.706
a'?) . 0.20699 - 0.001428 = 0.28556
0.706 . . .
Thus
p'2) 2% 023556 | o lcas
7 79 1.412 .
U'?) 4111 thus range from 63 volts for A = 18 to 243 volts for A = 50

and from 60 volte for A = 50 to 152 volts for A = 125.
$.5 Maximum allowable radial energy of the injected ions
The variation of the allowable radial energy with the “off symmetry”
of the injected ions was discussed in detail in chapter 2. The relation
,*'was 11lustrated to be of an elliptic nature and was summarised in Pig. 2.6.
From the practical point of view, however, we will limit ourselves to
the case of injection at the field axis and use the expression obtained
by Paul, et al.} for determining the maximum allowable radial energy of
the ions, namely

. e 15 .YA- electron volts,

u

where V is the rf voltage amplitude.

L
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This quantity represents the largest amount of radial energy a
#gtable™ ion is allowed to possess while still being focused by the
quadrupole field. This point is very important in designing the ion
source for the attainment of the high degree of sensitivity and col-
lection efficiency zequired in the present instrument. Since this con-
dition is proportioral to the applied rf voltage, it becomes most severe

in the case of hydrogen as in this case

¥ =116 volts
so that

116
u —me—— o 0,075 electron volts.
b g 15 x 100 ‘

It is seen that this value is rather small, approximately twice
the thermal energy of the ions at room temperature. This value, however,
is by no means obstructive since the ion source to be utilized with the
spectrometer is a diffusion type in which the ions diffusing out of the
gaseous plasma are essentially thermal. The ion source will be discussed
in detail in chapter §5.

The excellent feature of the quadrupole mass-spectrometer, namely,
the variable resolving power facility, again proves to be very advantageous.
The maximum allowable radial energy could be greatly increased by lower-
ing the resolution. It was shown that a practical resolving power of
% > 2m is sufficient for the studies planned.

Inserting this in the expression for u , we get

and from equation (2.4)

2

V = 20.148 £2 A volts,

L W%
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80 that

u " b fz x fz electron volts,

where £ is in Mo/s.

It can readily be seen that, in the case of low masses, where a
frequency of 2 Mc/s is employed, the ion is allowed to have a radial
energy of ¢ ev and will still remain stable in orbit and thus efficiently
detected.

3.6 Summary

Mass-Spectrometer Specifications

!'68 2 om

length: 100 om

mass ranget l-12 12-50 50125
frequencyt 2.0Mc/s 1.0Mc/s 0.5Mc /s
resolving power: 11100 13250 12250
rf voltage: 1161400 380-1457 364-910
power consumptionsg 0.6 - 50 watts
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Chapter 4

on and Outline of the Mass--S

In the following chapters, an attempt will be made to illustrate
the different problems that were encountered in the construction of the
mass-spectrometer and the efforts to solve them.

A block diagram of the complete mass-spectrometer is shown in
Pig. 4.1. The ions preoduced in a gas discharge tube are allowed to
diffuse out of the plasma through the glass wall via a small hole
having a diameter of 25 microns approximately. The appropriate ace~
celerating potential is then applied to the m_na using & double grid
after which the ions enter the quadrupole field. The output of the
quadrupole field, viz, the mass analyzed ions are then focused, using
a simple electrostatic lens, into the first dynode of the ion multiplier.
The focusing is required at this stage, since the effluent ions oseil-
late in the quadrupole field and hence have a wide exit angle. The
signal current output from the ion multiplier could either be dis-
played on an oscilloscope or be integrated through a vibrating reed

electrometer and the mass peaks recorded on a strip chart recorder.

Vs
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Chapter 5
The Ion Source

It was previously mentioned that the mass-spectrometer will be
used in a careful study of the bBasic collision processes. eesurring in
active, as well as in decaying plasmas.

The ion source, and the associated gas handling system are shown
in Pig. 5.1 (a,b) consists primarily of a gaseous discharge tube (A),
about one inch {n diameter, filled to a well-defined pressure with the
gas (er mixture of gases) to be studied. The high voltage applied to
the twbe produces a discharge thus ionising the gas. A small hole
(B), approximately 25 microns in diameter permits the ions to diffuse
out of the tube; these ions are then required to be mass analysed by
the spectrometer. The gaseous discharge tube is enclosed by a stainless
steel cylinder which is sealed to the fore end of the spectrometer via
a gold ring=flange vacuum seal. The two ends of the gaseous discharge
tube extend out of the cylinder via glass-kovar metal seals. One end
is sealed off and the other connects via a "Granville~Philips™ Type
C ultra<high vacuum metal valve to the pump and qas handling system.
This system consists of a “Consclidated” three stage oil diffusion
pump which is air cooled and backed by a “Cenco” high vacuum rotary
mechanical pump. The diffusion pump employs Octoil-S fluid.

The system 1s baked out at 350°C for approximately 12 hours and
pumped down to a pressure of the order of 10.9 mm Hg in order to ensure
that the discharge tube is sufficiently clean before admitting any gas.
The valve is then closed and the gas to be studied is introduced from

the gas bottles into the discharge tube via a leak valve (C) which is

e
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adjusted so as to maintain a constant gas pressure inside the discharge
tube. Two Zeolite traps, (D1 and Dz) are placed between the diffusion
pump and the discharge tube which serve to absorb the oil molecules
which are streaming back from the diffusion.pump. A special type of
oi] mancmeter (E), designed by Biondi,} 1s used for measuring the’
pressure of the gas in the discharge tube. This manometer is obviously
not bakeable, but a small heating wire is immersed in the o0il reservoir
to degas the oil during bakeout.

The two tungsten grids (F) and (G) are utilized for accelerating
the diffusing ions to the appropriate energy required for efficiently
traversing the quadrupole field.

Grid (G) is maintained at ground potential and the positive or
negative accelerating potential for positive or negative ion analysis
respectively is applied to grid (F). This arrangement is made to obtain
a sero potential difference between the axis of the quadrupole field
and the axis of the ion beam. This condition is very important for
maxinum efficiency requirements because if the incoming “stable” ion
s a8 a potential difference, it will acquire a radial energy which might
be larger than the zllowable radial energy, and hence will result in
the loss of this "stable” ion to the electrodes of the quadrupole field.
To fulfill this condition, the accelerating field is made as homogeneous
as possible by decreasing the distance between the two grids.

Figure 5.2 shows an enlarged view of the gaseous discharge tube
tip containing the hole. The choice of the sizse of the hole (about
25 microns) is based on the requirement that it should be very much
smaller than the thickness of the plasma sheath in order not to dis-

turb the sheath configuration. The hole is made by first sealing a
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tungsten wire with a diameter equal to the required hole sisze into the
ga>ss tube. The tube wall, at the face of the hole, is then ground and
the wire is subsequently etched away. The electrodes of the discharge
tube are made out of Molybdenum sheet; the diameter of the electrodes
is one inch or less.

A thermocouple pressure gauge measures the fore-pressure of the
mechanical pump and thus serves as a high pressure control. If during
bakeout, for example, the pressure rises above a certain preset value,
the thermocouple potential (propertiomal to the pressure) rises and
trips a relay so as to switch off the power to the ovens and the dif-
fusion pump. Figure 5.3 shows the wiring diagram for the ion-source

vacuum syste=m.

Reference
l. Biondi, M. A.,, ®0i]1 manometer for ultra-high vacuum systems”,

Rev. of Sc. Inst. 24, 989 (1953).

\,



T3NVd OMLINOD 3IJHNOS NOI €G 914
-~ — ] o
] iNO | )
_
| “ I 37dN0J0WHIHL OL
i ! 1 o
JOHLISNIS | H T 0
[ i HIWYOISNV YL
“ I ' INIWVILS .
t ] ! Y¥3ILV3IH
|||||||| ! m2 M2 -0 37dN0OJ
! SWHO 9 SWHO 2 “OWHIHL
_ 0l
aso
2 MO1LYVd
ol
483
I MO118vd oON
0l o
. b3
NVd -
w IS-3N
-— \J ° n N
JVINVA 0g . [ [
dWnd b L
zo_wﬁ.._u:o IS-3N
s Os oY
o 0%%0 o€ 1 g
dWNd3¥04 0L 1S-3N 0gi m%@ﬂ»%. _om

. d



P
QQQQQ
-




/

100 CM

[

\///////
V222222227 2277 /1/// &\

o




FULL SIZE







- 80 =

Chapter 6

. Meghanjocal Design Considerations

6.1 The quadrupole system

The guadrupole field if obtained by four electrodes shaped to
forn an gquilateral hyperbola having a = b = r, - 2 cm. An assembly
of the electrode system is shown in Pig. 6.1.

The outer casing (A) is a stainless steel Type 304 pipe, 6 inches
internal diameter and 0.128" wall thickness; the tube is 100 cm long.
Each of the four hyperbolic electrodes is formed by stretching 31
iplybdonnn wires of 0.508 mm in diameter along the length of the
tubes the cross section of each set of wires thereby lying on an arc
of the equilateral hyperbocla. The wires are fastened on each end by
small stainless steel screws to two stainless steel Type 303 plates
(B) of the shape shown in Pig. 6.2. It is to be noted that each set
of diagonally opposite electrodes (wires) are fastened to the same
plate since they carry the same polarity of potential. This is done
in order to reduce the alignment problem which will be discussed later.
It is interesting to mention that the hyperbolae were accurately cut
in plates (B) by determining first the length of the hyperbolic arc
(wvhich involved the evaluation of an elliptic integral*), thus ac-
curately dotorlinii\c the exact position of each wire with respect to
a chosen reference point. The metal was thereafter removed with the aid
of a precise milling machine. Plates (B) are held in place by four

studs each to the specially shaped set of flanges (C). A total of

*For the method of calculation, the reader is referred to the appendix.
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eight stainless steel plates (D) %" thick are fastened each under a
hyperbolic arc as thown in Pig. 6.1. Each plate has a set of holes
0.508 mm in diameter very accurately drilled along an identical hyper-
bolic arc through which the set of wires pass. Plates(D), therefore,
act as guides to the wires and are utilised for very fine adjustments
during the alignment procedure.

Insulation is achieved using small bushings made of "A1SiMag”
material and were kindly supplied by the Power Tube Division of
General Electric Company, Schenectady, New York. This material has
the advantage of possessing a high compression strength combined with
the ability to withstand high bakeout temperatures while maintaining
good dimensional stability.

6.2 Admissible over-all machining and alignment tolerances

It is understood that the behaviour of the mass-spectrometer is
largely determined by the position of the operating point in the sta-
bility diagram, i.e, by the parameters “a” and q (compare section 2.9).
It follows that these parameters must be stabiliszed to approximately
(1: 2m/Am) of their valuo.l Hence, the field radius r, must be constant
to better than (1: 4m/Am). This sets the upper limits to the tolerances
in machining, which, in our specific case were kept within + 0.001 inch;
this permits therefore, a maximum resolution of 320.

The performance of the spectrometer is also determined by the
degree of symmetry of the quadrupole field and especially its symmetry
about the tube axis. In other words, it is required, as previously
mentioned in chapter 5, that the axis of the spectrometer tube be at
ground potential. This condition is approached at high degrees of

symmetry of the quadrupole field. In practice, this is achieved by

s
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stretching a £ine conducting wire along the tube axis, switching on the
de and rf potentials and adjusting the position of the wires so as to
obtain a minimum potential on the wire with respect to ground.

6.3 Wire tension

The molybdenum wires are required to be under a tension equal to
approximately 40% of its breaking load. This explains the reason for
choosing molybdenum as a material for the wires since it possesses the
required tensile strength. There are two reasons for applying this
large amount of tension, namely,

1., to keep the deflection due to the attractive forces between
twc sets of adjacent wires, especially those at the end of the hyper~
bolic arcs wn.uh are closest to each other, within the set tolerances.
When calculating the force of attraction in this region of very high
field strength, it is found that the required tensile force is quite
large, exceeding, in effect, the yield strength of some of the known
conducting materials; hence, the choice of molybdenum.

2. to minimisze sagging of the wires.

6.4 The differential expansion problem

One of the basic requirements, which had to be taken into account
in the design of the spectrometer, is the ability to bake out the whole
system under vacuum at 450°C for a period of at least 12 hours. This
is done to ensure having a clean vacuum system which is essential for
reliable interpretation of experimental data. Bakeout presents a
problem only in the quadrupole system. Here, the difference in the
thermal coefficient of expansion between the stainless steel outer tube
and the molybdenum wires becomes quite serious. If the wires are in-

stalled and the system heated, the tension on the wires will gradually

s



increase due to the larger coefficient of expansion of stainless steel.
A simple calculation showed that at a temperature as low as 300°C, the
tensien becomes so large that it will exceed the yield strength of
nolybdenum resulting in a permanent deformation of the wires. Con-
sequently, when the system cools after bakeout, the tension on the
wires will be lost and they will therefore sag. This problem was
studied very carefully and it was found, unfortunately, that it could
not be solved by changing the material of the wires because, a material
having a higher tensile strength Jlike tungsten, say, has also a smaller
thermal coefficient of expansion. Stainless steel wires, on the other
hand, could not be used since they possess a high creep rate, especially
at higher temperatures. Thus, while it eliminates the differential
expansion problem altogether, after a few bakeouts we will end right
where we started from.

The problem was solved, therefore, by deliberately sagging the
wires, baking out the system with the wires sagged, cooling to room
temperature and then pulling the wires back to the required amount of
tension. This was achieved through the use of an extra flange and
bellow (E), fastened to the tube at the far end of the spectrometer
(fig. 6.1). The bellow is first rigidly fixed in its neutral state
(neither expanded or compressed). The wires are then installed and
pulled to the required amount of tension. Before bakeout, the bellow
is allowed to contract, thereby sagging the wires, and is then pulled
back after bakeout. A hydraulic jack system will probably be used to
measure the force on the flange thereby making it possible to adjust
the tension on the wires after bakeout. This methed adds the advantage
of easily adjusting the tension on the wires since it might change due

to electrical heating effects or otherwise.
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The quadrupole system is connected to the ion source via a short
section (F) of stainless steel 6% tubing with gold-ring sealed flanges
as shown in Fig. 6.1. To ensure maximum sealing efficiency of the
flanges, a bellow must be inserted wherever a set of two flanges con-
nects together. This bellow relieves the stresses which might occur in
the flanges if all connections were rigid. These stresses are the main
cause for leakage around the gold ring.

Three sections of 3" diameter tubing are connected to the main
section (F), thereby providing access to the system. One tube con~
nects to the mass-spectrometer pumping system. The second tube is
utilised for slectrical wire inputs and fastening of grids. The third
tube is preserved for further development of the studies and may be
combimed with a guarts window for optical viewing of the gaseous discharge
in the ion source.

At the far end of the spectrometer, a similar section of tubing
connects the output of the quadrupole system to the ion multiplier
detection system. The ports at this end are again utilised for pumping
and focusing of the effluent ions.

6.5 Mounting of the massespectrometer system

A desired feature, which was taken into account in the design of
the system, was equipment “"mobility”. The entire mass-spectrometer
system is constructed to be a mobile system. It was both plausible
and desirable to design it in this manner when taking into consideration
the future developments in our reaearch program which will require the
combination of the mass-spectrometer with other research equipment

for simultaneous measurements.
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The entire system is placed on a table 93” x 38" x 30" high,
which is made of “Dexion” slotted angle iron. The table has a $/4”
plywood and formica top and is supplied with heavy-duty casters.
lounted on the table is an angle iron frame on top of which are placed
a number of heat insulating blocks made of aluminum filled with glass
wool and covered with Transite material. These blocks cover the whole
area of the table and act to insulate the heat of t* ovens rrv.. **=
botiom part of the table.

The mas: =pesctrometer, excluding the ion source vacuum and gas
handling system, is held above the Transite top with three heavy U~
shaped stainless steel cups because of the low bending stress of the
Transite. The cups holding the spectrometer are fastened very rigidly
to two channel-beam sections running lengthwise under the table top and
are in turn rigidly fastened to the frame of the table.

By clamping the mass-spectrometer tube rigidly at the ion source
end, it is, therefore, possible to allow thermal expansion of the tube
during bakeout to take place in one direction only, namely, down the
tube toward the detection system. This is done in order to preserve
the critical alignme-* of ““a quadrupole system with the ion source.

The system is heated for ba -ecout purposes through the use of six
.nverted U-shaped oven sections which are placed over the entire area
of the table. The ovens use ten kilowatts of electric power to heat the
mass-spectrometer system. The ovens are divided into two parts, the
ion source oven and L.. mass-spectrometer oven. Each of the two ovens
is separately controlled by a ”Partlow Temperature Control” and in
addition, each is supplied with a cutoff relay system for switching off

the oven supplies in case of serious pressure rise in the system. The

s
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o 'reuit diagram for the oven control systems is shown in Fig. 6.3.

Reference
l. Paul, W., Reinhard, H. P., and von Zahn, U,, “Das elektrische

Massenfilter als Massenspektrometer und Isotopentremner”, 2.

Phys. 152(2), 143 (1958).
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Chapter 7

The Mags-Spectrometer Vacuum System

7.1 Pumping speed considerations

In the practical and experimental fields of the science of high
vacuum in general, it is quite essential to determine the "oonductivity”
of the channels through which the gases flow. The conductivity is de-
fined as the rate of flow of gas in cubic centimeters per second per
unit pressure difference.

Since the conductivity is a function of the dimensions of the tube,
as expescted, it will certainly be influenced by a sudden change in
the cross-sectional area of the tube.

An expression for the conductivity could be defined as

1 1
F = - (7.1)
W plﬂz P - Py

where
Q 1is the guantity of gas flowing, at a pressure of 1 dyno/cmz,
through the tube.
F 1is the conductivity,

1/2 is the total resistance of the tube together with

wrpl
the influence of the end opening.
Py is the density of the gas at normal temperature and a
pressure of 1 c:lyno/cll2 = 7,5006 x 10"4 mm Hg.
Hence, erlll 2 represents the combined "resistance” of the tube to
molecular streaming at a pressure of 1 dyno/cmz.

It has been shown by Jnananandal that the "resistance” of a tube

of cylindrical configuration to the flow of the gas may be expressed as

\,



1/2 (] L 1/2
[+] W= -s P '
1 (2w) 2 p 1

where
L 1is the length of the tube in om
D 1is the diameter of the tube in om.
If one end of the tube be circular with diameter D’ om, the total re~

1/2

sistance erl of the tube, together with the influence of the end

opening, is given byl

12 . 1/2 _ ,__ 6L 3.192. 1/2
Py T W = (W + W oy ‘(2ﬂ) 0 S oy %,
(7.2)
Hence
2,304, 38,193,711
F- (a3, 219, - (7.3)
D D’ 2 *

It follows from the gas laws that the density 2 at a pressure of

1 d]molcl2 is

where

M 1is the molecular weight.

R 1is the universal gas constant.

T is the temperature in degrees Kelvin.
Therefore,

1 1l/2

P (Re3%L , 3.192

RT
> oet &)

. (7.4)

It is to be noted that equation (7.3) and (7.4) hold only when the

ratio of the diameter of the tube D to ‘he mean free path of the gas

LY
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molecules is very small (Knudsen flow).
We will new proceed to obtain an estimate of the resistance of

the tubing connecting the mass-spectrometer to the diffusion pumps

using equation (7.2).

The diameter 'of the tube is taken to be 3 inches = 7.5 om. The

inlet diameter of the valve is 2 inches = 5 om. The length of the
tube is estimated to be 30 oms, so that

W= € x 30 + 32192 6183

— 1/2 -8
Ty (et x (7.5)°  (5.0)2

CR seC.

1

Resistance of tubing connecting high vacuum valve to diffusion pump
It is assumed that the resistance of the valve when fully open

is negligible.

Taking an estimated tube length of 75 cms, we find

1/2
P wrz = 0,438 plllz om 3 secC.
Hence, the total tube resistance is
o, 2w - (0.438 + 0.183)p,}/% & 0.6210, ' Zem™ sec.

rtc>1:a1

For air at room temperature

1/2
(,%T-) a~ 29 x 103 dyne cm

Hence

~ 46.7 x 10° = 46.7 liters/sec.

L
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Cajgoulation of pumping speed

The pumping spsed iz one of the characteristics of a vacuum pump.
It is defined as follews:

The pumping speed at any given pressure is the volume of gas ab-
stracted per unit time, measured at that pressure, from an enclosure
containing gas at the same wean pressure. This definition, which is due
to Gaede, thus confines itsel! to the speed at a given pressure instead
of the pump speed in general for all pressures. This restriction is
proper, for in most of the pumps the pumping speed varies with the
variation of pressure.

In accordance with the above definition, the pump speed S may be

given the precise expression
dv
S = (d—t.)p (7.5)

Influence of connecting tube system upon the pumping speed
As a result of “resistance” of the tube system encountered by the

gaseocus flow, the actual pumping speed E depends not only upon the ine
trinsic pump speed S of the pump but also upon the “conductivity” F.
The pressure p at the lower pressure terminus of the punp therefore
differs from the pressure Py in the vacuum enclosure.

An equation, expressing the relation between the intrinsic pump
speed S, the “conductivity” F, and the actual pumping speed E can easily
be obtained. This is found to be

Sr

S X

(7.6)

Upon close observance of this expression, one can readily see that it
is important for an efficient utilisation of the maximum speed of a

pump that the dimensions of the connecting tube be so chosen that F

L ¥



-71-

is made as large as practicable. If the dimensions of the tube system
were, however, to be determined by other consi ierations, so that F is
not of sufficiently large magnitude, it would be futile to make use of

a pump of high intrinsic speed.

Three air-cooled three stage glass oil diffusion pumps are used

to pump down the mass-spectrometer system. The pumps, employing Octoil-S

pumping fluid are manufactured by Consolidated Electro-dynamics, Txpe
No. GF26. Each pump is connected separately to the system by similar
tube and valve arrangements. Each pump has a specified intrinsic speed
of 25 liters/second. Hence, using the estimated conductivity F of

tubing for each pump, we obtain the actual pumping speed as

E=

= 16.28 liters/sec.

Hence, the total pumping speed of the system is

E 3 x 16.28 = 49 liters/sec.

total

This pumping speed proves to be quite adequate since the approximate
total volume of the mass-spectrometer system is 42 liters.
7.2 Description of the vacuum system

The vacuum system layout is shown schematically in Pig. 7.1. The
diffusion pumps are backed by a “Cenco Hypervac 25”, 264 liters/minute
two stage rotary mechanical pump which produces a forepressure of
about 10.4 »m Hg. The vacuum system connections are very similar to
that of the ion source system which has been described in chapter S,
except for the following points which should be mentioned:

l. The valves shown, which are used for the connections between

the mass.spectrometer and the diffusion pumps are 2” in diameter to

s
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keep the conductivity of the tubing as high as possible. These valves
have been newly developed by Granville-Philips Company and are Bakeable
up to 430 degrees Centigrade.

2. The seolite traps are placed on the diffusion pump side of
the valve. The reason being that these traps are to be baked out
separately, with the valve closed for isolating the ion multiplier
detector from any oil vapors which, apparently, are quite harmful.

3. The three ion gauges shown are operated by one *Veeco Type
RGS-A vacuum gauge control panel” using a relay switching mechanism
for measuring the pressure at each ion gauge separately. The same
"Veeco” measures the "foropronuro of both mechanical pumps through the
use of two thermeceuple gauges.

4. High pressure cut-off relays are also inserted and are installed
in a manner similar to that described in the ion-source vacuum system.
The circuit diagram of the mass-spectrometer vacuum control panel is

shown in Pig. 7.2.

Reference

1. Jnanananda, S., “High Vacua”, D. van Nostrand Company, (1947).
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Chapter 8

Design of Electronic Apparatus

8.1 Electric powsr requirements for the gquadrupole system
With reference to chapter 3§ which dealt with the design parameters
of the spectrometer, the following electric power requirements were
obtained:
RF_Power: Frequency: 0.5 Mc/s, 1.0 Mc/s, 2.0 Mc/s
Voltage range: 116 volts to 1457 volts
Range of power requirement: 0.6 watts to 50 watts
Stability and accuracy: better than + 0.1%
DC Power: Voltage range: 20 volts to 240 volts
Stability and accuracy: better than + 0.1%
Power requirement: nil.
A block diagram of the components used in meeting these require-
ments is shown in FPig. 8.1. This consists of the following units:
1. A very stable and accurate signal generator which is utilized
for generating the required radio frequencies, The generator is a
? iemens Type Rel 3W 518/c2a level oscillator” having the following
tpecifications:
Frequency range: 30 kc/s to 15 Mc/s, with frequency locke-
in in 100 kc/s steps.
Additional incremental frequency contrel, continuously ad-
justable from O to 100 kc/s.
Maximum frequency error + 2 x 10-5 + 300 c/s.
Maximum frequency variation with 10% line voltage variationt

+1x 10"6 + 30 c/s.

\s
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Output level (full scale deflection) =60 db to +10 db.
Source impedance can be switched: O to 150 ohms in steps.
Automatic synchro=tuning system.
Frequency sweep facility when used in conjunction with a
sweep generator.
2. RF Linear amplifier
The output sinusoidal radio frequency signal is fed into a linear
push=pull amplifier which is capable of delivering up to 170 watts of
radio frequency power to the load. A linear amplifier was used in
order to eliminate the need for an intermediate driving stage between
the signal generator and the amplifier.
3. Voltage step-up unit
In order to meet the high rf voltage requirement wnile maintaining
a good degree of stability, the amplifier is loosely coupled to the load
(quadrupole system) through a voltage step-up unit. Loose co?plinq has
the advantage of minimizing the effect of load impedance variation on
the amplifier. This is important in our case since it has been shown
that the capacity of the quadrupole system changes with the mass of
the injected ions. Voltage step-up is achieved through making use of
the fact that the quadrupole system presents a capacitive load to the
amplifier. Therefore, two variable inductors are introduced, as shown
in Pig. 8.2, which are utilized to series~tune the circuit while main-
taining symmetry and thus obtaining maximum voltage across the capacitive
quadrupole system.
4. Rectifier
It was seen that the resolution of the mass-spectrometer is solely

determined by the ratio of the applied dc voltage to the rf voltage

LY
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amplitude. It was, therefore, advantageous to generate the required

do voltage through rectification of the rf signal and using potential
dividers to obtain the desired ratio as shown in Pig. 8.2. This

method, therefore, makes it possible to maintain the resolution of the
spectrometer constant, since any change applied to the rf voltage V will
produce a proportional change in the dc voltage U, provided the potential
divider settings remain unchanged.

Two high voltage silicon rectifiers were used for obtaining posi-
tive and negative dc potentials through half wave rectification. The
desired portion of the rectified voltage is selected via the potential
dividers Rl and R2 and is then superimposed on the rf signal through
radio frequency chokes of the appropriate value. The combined signal
is then delivered to the quadrupole system. R3 is a 10 kilo=-ohm
potentiometer which is adjusted to obtain the desired symmetry of the
field. Rl and R2 are mechanically coupled in order to ensure that
symnetry is maintained while changing the resolution of the mass-spsctro-
meter.

8.2 Design of the rf linear power amplifier

The push-pull linear amplifier was designed using the following
vacuum tubes:

Type: EIMAC 4CX300A compact ceramic integral-finned power tetrode.

Maximum plate dissipation: 300 watts each.

Cooling: Forced air.

Maximum operating frequency: 500 megacycles per second.

The most important characteristic of a linear amplifier is the

relationship between output voltage and exciting voltage, since this

shows the extent to which the amplifier is actually linear. In a
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typical characteristic, the relation between the two is quite linear
up to a certain critical exciting voltage, after which the output
levels off or saturates. The linearity of the amplifier characteristic
below saturation is greatest when the amplifier tube is biased to
projected cutoff oxactly.l

We will now proceed to determine the operating voltages and cur~
rents of the amplifier on a one tube basis, since in push~pull amplifiers
both tubes are operating under identical conditions.

From the available data of the 4CX300A tube, we obtain the following
values:

Amplification factor (grid to screen) Mog ™ 4.8.

Typical do plate operating voltage Eb = 2000 volts.

Maximum allowable plate dissipation = 300 watts.

qf screen voltage E‘ = 350 volts.

Peak space current Imax = 500 ma.
Since the amplifier is to operate at projected cutoff, the angle of
plate current flow 2¢, shown in the instantaneous diagrams in Pig. 8.3,

is equal to 180°. Therefore, the required dc bias voltage

E
s 350
Ec 5 i85 - 78 volts.

The grid driving voltage Eq can now be taken to e 70 volts. From the
existing curves, which give the relation between the direct current
Iav and the fundamental frequency component of the space current amplie-
tude Il to the peak amplitude Inax as a function of angle flow, we

obtain for ¢ = 90°
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so that

I, = 0.5 x 500 x 1073 = 250 ma

and

I,, = 0.318 x 500 x 1073 = 160 ma .

It is known that the choice of a low load impedance in a linear
amplifier extends its linearity, but will, unfortunately, also lower
the output power and efficiency. The load impedance Zl is chosen to
be 2.0 kilo=-ohms.

E
Zl = T; ’

where El is the rf plate voltage amplitude. Therefors,

B, = I, 2 = 250 x 1073 x 2.0 x 10% = 500 volts

E,I -3
Output power /tube = .%_1 . 30 x 2.z.tso x 10

= §2.5 watts.

Thus, the total available power output from the amplifier is equal to
125 watts. This value is quite adequate since the theoretical power
requirements, as calculated in chapter 3, yielded a maximum of 50
watts. This output power does, by no means represent the maximum
capacity of the amplifier, since much larger powers could be easily
obtained if desired as previously mentioned.

Input power = E T = 2000 x 160 x 107> = 320 watts.

Plate dissipation = 320 - 62.5 = 257.5 watts.

Thus, the design is safe.

G
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Tank circuit degign.
Load impedance = 2 x 103 = wli).

Assuming an effective Q to be 10,
we have

s
-2—5-1%9- = 2 x 102 = 200 ohms = &

ul o

For a frequency of 0.5 Mc/s

o T

wx 10
and,
1
C = 5 - 1590 pf
200 10
For 1 Mc/s:
L =382uh and C = 800 pf
For 2 Mc/s:

L =16ph and C = 400 pf,

The actual circuit diagram of the amplifier is shown in Pig. 8.4.

The required control grid bias voltage was supplied from a very
stable fixed "Hewlett-Packard, Type 712” regulated power supply. The
screen grid power requirements are also supplied separately from the
same power supply. The screen voltage is very highly regulated and
is maintained constant with 1 x 10.5 of its value, thereby ensuring
great stability of the amplifier.

The plate power supply, the circuit diagram of which is shown in
Fig. 8.5, was designed and built in the laboratory. It is capable of

supplying up to 3000 volts at 500 ma through the use of a full wave

L\
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merocury vapour rectifier. Through proper filtering, it was possible

to maintain the ripple below 0.5% with adeguate regulation. To

achieve the required stability, the amplifier and power supplies were

connected to the line voltage via a special “Sola” constant voltage

transformer, which eliminates any effects due to line voltage variation.
Special precautions were taken in the construction of the amplifier

for elimination of parasitic oscillations and other instability effects.

Adequate forced air cooling was supplied to the tubes and shielding

was adequately employed wherever it deemed necessary. Special pre-

cautions are also taken against damaging the tubes due to sudden failure

of the plate or grid supply voltages by using overe=current cutoff re-

layﬂ .

Reference

1. Mahmoud, A., "Lecture course, Cairo University”, (1957).
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Chapter 9

The Detection System

In this chapter, an attempt will be made to illustrate the different
methods by which ions extracted from a mass-spectrometer could be de~
tected. The method suited to our applications is thence chosen and
applied to the gquadrupole spectrometer. An evaluation of the problems
arising with the method will be attempted, together with suggestions
as to the methods of solving them. Unfortunately, at the time of
writing this manuscript, it was not possible to varify the solution
experimentally but it is hoped that clear apprehension of the problem
would, at least, be achieved.

9.1 Brief outline of methods of detection

Several methods have been develcped to detect the motion of a beam
of ions flowing out of an analytical instrument. The following are a
few of the more common and interesting methods:

a. Detection by the use of a Faraday Cage

This method has the advantage of possessing a high collection
cefficiency due to the large coverage space of the collector, but, un-
fortunately, is much less sensitive than some of the other methods.
This method was used in some of the earlier types of quadrupole mass-
spectrometers and proved to be successful for detecting currents in
the range 1070 amps to 10°12 amps combined with an electrometer.

b. The ion-multiplier oscilloscope method

This method combines the use of an ion multiplier, which amplifies
the ion current through secondary electron emission gain, with an oscil-
loscope triggered by the ion beam. This method is very useful for fast

scanning purposes.

s



¢. Scintillation type mass-spectrometer ion detector
This is a new and relatively simple type of mass-spectrometer ion

detector developed by Daly.1 The positive ions are accelerated through
40 kV and impinge onto an aluminum surface releasing secondary electrons,
and these in turn are accelerated onto an organic scintillator, viewed
by a sealed-off photomultiplier. Counting methods could be used to

measure the intensity of ion beams. Sir~ .(ne uetu. -~ has a low noise
0

level (4 x 10‘"2 amp) it is, therefore, quite sensitive and is easily
capable of measuring currents of the order of 10"18 amps. Its dis-
advantage lies, however, in the extremely high accelerating voltage
requirements.

d. The ion-multiplier electrometer-recorder method

The current sutput of the ion multiplier due to the impingement
of the ion beam on the first dynode, is integrated using an electro-
meter (usually of the vibrating reed type) and the signal is thereafter
recorded on a strip-chart recorder.

Considering that the normal gain of an ion multiplier is of the
order of 106 and that an electrometer is capable of easily measuring

currents ~¥ t%~ order of 10.13

amps, it is evident that this method
is quite sensitive a.so, and could be used for the measurement of
very low ion currents; individual ions should, therefore, be cbservable.
Method (d) has been adopted in the present instrument, together
with the possible use of method (b), for the basic reason that it
satisfies ‘Ye high sensitivity requirement together with the ease and
simplicity of the circuitry involved.
9.2 The exit angle problem
It has been previously shown that the ions, while passing through

the quadrupole system, undergo a two~dimensional oscillatory type of

\s



motion. One would expect, therefore, that a “stable” ion upon reaching

the end of the field will emerce at an angle to the axis depending upon
its phase of injection. This is indeed the case and it constitutes a
problem, especially since maximum collection efficiency is desired. This
is also true when operatinc at very low ion currents (a few ions per
second) since the individual ion now forms a measurable portion of the
beam.

In order to solve this problem, two suggestions cculd be made?

a. Through the use of a simple electrostatic lens inserted be-
tween the end of the quadrupole system and the ion multiplier. This
lens, which is constituted mainly of two diaphragms having a potential
difference between them, will tend to foous the diverging beam and
thus collimate it onto the first dynode of the ion multiplier.

b. Placing the ion multiplier as close as possible to the exit
of the quadrupole system. In this case, however, extreme care has to
be taken in shielding the ion multiplier from the end effects of the rf
field which might modulate the secondary electron beam and heat the
multiplier by induction. A suggested method to accomplish this is to
wrap the ion multiplier in a slitted metal cylinder thus achieving

shielding and prevention from induction heating simultaneously.

Reference
1. Daly, J. R., "Scintillation type mass-spectrometer ion detector”,

Rev. of Sc. Inst. 31, #3, 264 (1960).
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Chapter 10

Planned Applications of the Hass-Spectrometer

As mentioned in the introduction of this manuscript, the identifica-
tion of iens is of prime importance for a reliable interpretation of
gaseous plasma phenomena.

Beside the more common usefulness of a mass-spectrometer in the study
of ionisation probabilities, appearance potentials,etc., the mass-spectro-~
meter deacribed is constructed spscifically for linking results obtained
with other measuring techniques established within the research group
at the Department of Electrical Engineering of the University of Minnesota.
The main effort of this group is directed towards the study of the physics
of disintegrating plasmas. Conaoquontly, a full apprehension of the
phenomena involved requires completion of the following planned studies.

1. Afterglow studies

The types of ions present during the afterglow period will be
identified and their time rate of change measured.

2. Mass-mobility relationships

The mass-spectrometer will be combined with the available drift
tube “spectrometer” for a conclusive determination of the relation-
ships between the mass of ion and its mobility in various gases. This
combination makes it also possible to study ion~conversion phenomena.

For instance, an accurate determination of the conversion frequency for

processes of the type

x*+x+Y...x2*+Y

— )t x

is of prime importances.
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The gases which are planned to be studied are

a. Rare gases and their mixtures
We hope to obtain more conclusive information about the properties

and production mechanisms of molecular ions, such as Ho; R llo;,
(Hc!!o)*, ete.

b. H n and rare gas-h n mixtures

When studying plasma phenomena in hydrogen the identification of
the type of ion involved is especially significant, since at least
three types of hydrogen ions exist, namely, H‘, H *, l;. Moreover,
very little information is available about the properties and pro-
duction mechanisms of the composite ions, such as (H.H)+, (NOH)*, etc.

3. nts of the

Further develo ss-spectrometer

A study will be made of the possibilities which might exist in the
improvement of certain components of the mass—spectrometer; in particular,
the ion source design and the detection system. A possibility exists
to improve the latter through the use of the induced currents at the

electrodes due to the vibration of the ions as a method of detection.
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APPENDIX

Calculation of the Arc-Length of an Equilateral Hyperbola

The equation of an equilateral hyperbola can be reduced to the
simple form:

2 2 2
X - y = a ,
Hence,
< AR S SE—
dx y 1/2 °*
(x2 + az)

The length of one arc of the hyperbola from x = a to x = x, is
equal to

X X
[+] (o]
Le [0 et e - [ ayanh?t? o
a (]

since the hyperbola does not exist for x <: a,

Thus,
%o X0
L= f (1 + (x2/x2+a2) )1/2 dx = 21’2 f (x2 + azlz)/(xznz) 1’2d.x.
° °
Let
X = b tan ¢
b = (a.!2l2)1/2
Hence,

= = -1
x5 b tan ¢° or ¢o tan xolb

also, dx = b soc2¢ dg ,

Substituting in the expression for L, we get

L 1
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1/2 f b 800 g 2
(- tcn ¢ +a )
¢
RIEIN f ° sec’s dg
2 1/2
° (tan“p + 1 + 1)
U]
RVEIN _£° sec’s dp
seceg (1 + col2¢)llz
o d 2
b ag where k° = 1/2
‘£ ¢0l2¢ (1 - kzsinzﬂlrz ‘

This is a standard elliptic integral, the solution of which is tabulated

as
where
a
kz
k2
D
in which
F
E

Atang + k2 (D - F)
L= 2

k2
(1 - K2 ainz¢°)1l2
1/2
1-%%=1/2
fo sinxdx . E=E
(3 (1 - kzain x)llz kz

elliptic integral of argument - k of the first kind

elliptic integral of argument k of the second kind,

Hence, the length of the arc can be computed.

In the case of the spectrometer electrode, it was found to be 4.6028 cm,
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